Expanding the Limits of Thermoacidophily in the Archaeon Sulfolobus solfataricus by Adaptive Evolution.
نویسندگان
چکیده
Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales flourish in hot acidic habitats that are strongly oxidizing. The pH extremes of these habitats, however, often exceed the acid tolerance of type species and strains. Here, adaptive laboratory evolution was used over a 3-year period to test whether such organisms harbor additional thermoacidophilic capacity. Three distinct cell lines derived from a single type species were subjected to high-temperature serial passage while culture acidity was gradually increased. A 178-fold increase in thermoacidophily was achieved after 29 increments of shifted culture pH resulting in growth at pH 0.8 and 80°C. These strains were named super-acid-resistant Crenarchaeota (SARC). Mathematical modeling using growth parameters predicted the limits of acid resistance, while genome resequencing and transcriptome resequencing were conducted for insight into mechanisms responsible for the evolved trait. Among the mutations that were detected, a set of eight nonsynonymous changes may explain the heritability of increased acid resistance despite an unexpected lack of transposition. Four multigene components of the SARC transcriptome implicated oxidative stress as a primary challenge accompanying growth at acid extremes. These components included accelerated membrane biogenesis, induction of the mer operon, and an increased capacity for the generation of energy and reductant.
منابع مشابه
Complete Genome Sequence of Sulfolobus solfataricus Strain 98/2 and Evolved Derivatives
Sulfolobus solfataricus is a thermoacidophilic crenarcheote with a 3.0-Mb genome. Here, we report the genome sequence of S. solfataricus strain 98/2, along with several evolved derivatives generated through experimental microbial evolution for enhanced thermoacidophily.
متن کاملThe particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA.
The lemon-shaped "virus-like" particle SSV1 produced by the thermophilic archaeon Sulfolobus shibatae has not previously been observed to infect any host. Using a plaque assay suitable for the extreme growth conditions of this archaeon, we have shown infection of Sulfolobus solfataricus by SSV1. Upon infection, the viral genome was always found integrated into a tRNA gene of the host chromosome...
متن کاملAntisense regulation by transposon-derived RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus
We report the first example of antisense RNA regulation in a hyperthermophilic archaeon. In Sulfolobus solfataricus, the transposon-derived paralogous RNAs, RNA-257(1-4), show extended complementarity to the 3' UTR of the 1183 mRNA, encoding a putative phosphate transporter. Phosphate limitation results in decreased RNA-257(1) and increased 1183 mRNA levels. Correspondingly, the 1183 mRNA is fa...
متن کاملCRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus
The recently discovered clustered regularly interspaced short palindromic repeat (CRISPR)-mediated virus defense represents an adaptive immune system in many bacteria and archaea. Small CRISPR RNAs cause cleavage of complementary invading nucleic acids in conjunction with an associated protein or a protein complex. Here, we show CRISPR-mediated cleavage of mRNA from an invading virus in the hyp...
متن کاملProperties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing.
A gene (ssg) encoding a putative glucoamylase in a hyperthermophilic archaeon, Sulfolobus solfataricus, was cloned and expressed in Escherichia coli, and the properties of the recombinant protein were examined in relation to the glucose production process. The recombinant glucoamylase was extremely thermostable, with an optimal temperature at 90 degrees C. The enzyme was most active in the pH r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 82 3 شماره
صفحات -
تاریخ انتشار 2016